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It has been shown that certain patterns of surface waviness on a counter surface, in
conjunction with speed and sti!ness of a slider can create vibrations that reduce slider wear.
This study attempts to simulate these vibrations, with the goal of understanding how the
slider interacts with the surface waviness, to produce a given vibration. This paper develops
a model of a four-degree-of-freedom rigid body pressed against a sliding counter surface, and
studies its vibration motions under several conditions. The four degrees of freedom include
one translation normal to the sliding surface and three rotations. The e!ects of waviness of
the counter surface on the system responses are also studied. To model loading e!ects
between the slider and a wavy counter surface that has multiple points of contact, an
equivalent contact point is de"ned that is assumed to move along a certain path on the
slider's contact surface. Several possible paths of the equivalent contact point over the slider
face were studied, and their e!ects are discussed. With appropriate choice of parameters, the
simulation results were comparable to experimental results obtained in a previous study.

( 2000 Academic Press
1. INTRODUCTION

It has long been known that vibrations can reduce friction [1}5]. Vibrations can also reduce
sliding wear. Bryant et al. [6, 7] and Tewari [8] found that wear particles detached from
brushes sliding against smooth rotors were larger than those detached sliding against wavy
rotors. Finding wear rates lower when sliding on wavy rotors than on smooth rotors,
Bryant co-workers [9}11] suggested that waviness of the mating surface could signi"cantly
reduce brush wear rates without contact separations. The authors claimed that wear
reduction was due to micro-vibrations induced by the surface waviness. Contact voltage
drop tests [7] indicated that the wear reduction was not due to separation of surfaces.

Conducting experiments in which wear rates of carbon brushes at di!erent clearances
between brush and brush holder were compared, York [12] and Bryant et al. [7] reported
that a proper amount of clearance could reduce wear rates up to 50%. The optimal amount
of clearance was correlated to the wear particle size. The author hypothesized that, with
a proper amount of clearance, the brush could rock within its holder. This created a gap
through which wear particles could escape without scratching the brush's bottom surface.
However, when the clearances were too large, the brush banged against the inner sides of
the holder, increasing wear.

More recent experiments by Bryant and York [13] slid a carbon graphite block over
a wavy steel counter surface. Using a capacitance gauge, they measured the resulting
rigid-body vibration displacements induced by the surface waviness, and correlated these
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vibratory motions to measurements of wear. They found a correlation between wear rate
and kinetic energy of vibration. In reference [13], a sample, spring loaded in a holder, slid
against a rotor that had a three-dimensional surface waviness topography. Surface waves
from this topography passed beneath the slider and forced the slider to vibrate: translate
normal to the sliding surface, and rock or rotate with rotation vectors parallel and
perpendicular to the sliding direction. A micron resolution capacitance gauge measured
translation motions along directions (X, >, Z ) shown in Figure 1; displacements X and
> were converted into rocking rotations h and / parallel and perpendicular to the sliding
direction X. During these experiments, York [12, 7] found that rocking vibrations with
rotation vector perpendicular to the direction of sliding generated acoustic noise, and often
were associated with stick/slip at the leading or trailing edge of the slider. Conversely,
rocking vibrations with rotation vector parallel to the direction of sliding were much
quieter.

Swayze and Akay [14] developed a vibration model of a two-dimensional rigid-body
sliding against a smooth surface. They studied stability of the system with respect to system
parameters. This paper extends the Swayze and Akay work [14] to four degrees of freedom
(d.o.f.), and uses this vibration model to simulate sliding against wavy counter surfaces. The
goal is to understand friction and wear reduction phenomena caused by vibrations. Swayze
and Akay's simulations featured rigid-body translations normal to the sliding surface, and
rocking with a rotation vector perpendicular to the sliding direction. As mentioned earlier,
York's experiments [12, 7] found that these vibrations generated substantial acoustic noise.
More d.o.f are needed to simulate York's other rocking case, with rotation vector parallel to
sliding, which seemed to suppress noise and slip/stick.

In this paper, a model for a four-d.o.f. rigid-body sliding against a smooth surface will be
developed, the equations will be veri"ed analytically and numerically, a stability analysis
will be performed, and then a surface waviness excitation will be added with simulations
thereof presented. These simulations will then be compared to measurements found in
reference [13].

2. MODEL FORMULATION

Figure 1 shows the 3-D rigid body pressed against a counter surface moving with speed
; in the positive X direction. Co-ordinate system (X, >, Z) is an inertial frame; system
(x, y, z) is attached to the center of mass of the rigid body. The slider can translate vertically
(along Z)0), but is constrained in the other directions (X and > ). The slider can
rotate about all three axes. The rigid body has dimensions (2h

x
, 2h

y
, 2h

z
) along (x, y, z)

respectively. A static vertical force, F
st
*0, is applied at the center of mass to promote

contact between the slider and the counter surface. Rotations of the body about (x, y, z) are
described by Euler's angles (/, h, t) [15].

2.1. EQUATIONS OF MOTION

Consider the case when /, h'0. For a rectangular parallelepiped slider, the contact
point is at the corner at the co-ordinate (!h

x
, h

y
, h

z
) in the xyz system. This results in an

upward movement of the center of mass of the slider. The vertical displacement Z in the
X>Z system due to small rotations / and h be determined by transforming the distance
between the center of mass and the contact point in the xyz to the X>Z co-ordinates
through the transformation matrix [¹] (equation (A5)) and then by subtracting that value



Figure 1. A slider of dimensions 2h
x
]2h

y
]2h

z
pressed against a counter surface which moves with speed; in

the X direction. Variables h, /, t measure angular displacements about y-, x-, and z-axis; Z measures vertical
displacements. The X>Z co-ordinate system is "xed, xyz system is attached to the slider. The contact point when
/, h'0 is shown.
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from the initial distance h
z
:
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(1! cos h cos/)]. (1)

Displacements Z of the center of mass in the Z direction are governed by
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n
, (2)

where m is the mass of the slider, b
z
and k

z
are damping and sti!ness coe$cients for motions

along the Z-axis, and F
n

is the total normal force in the Z direction that presses the slider
against the counter surface. Substitution of equation (1) into equation (2) permits evaluation
of
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Rotations (/, h, t) about the xyz axes are governed by Euler's equations [15]
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and from reference [15],

u@
x
"/Q !tQ sin h, u@

y
"hQ cos/#tQ cos h sin/ , (5)

u@
z
"tQ cos h cos/!hQ sin/ .

Substituting equations (5) into equations (4), we obtain

M
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) ( cos h sin/tQ # cos/hQ )
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Moments on the body are due to the normal force F
n
, the friction force Fk"kF

n
, and

sti!ness k's and damping b's acting about the three axes. These moments can be expressed in
the xyz co-ordinate system as
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where F
n

is given in equation (3).
By equating the right-hand sides of equations (6) and (7) and then rearranging, we obtain

the equations of motion for the slider of Figure 1 in terms of variables h, /, t, which are a set
of three second-order, implicit ordinary di+erential equations.

2.2. VERIFICATION

With special constraints, the 3-D model degenerates into Swayze and Akay's [14] 2-D
model. The d.o.f. will reduce from four to two: two of the three Euler angles (t and a second
angle) and their "rst and second time derivatives (which, in fact, are angular velocity and
acceleration) will be zero. Four possible ways in which the 3-D model could be reduced were
investigated to verify formulations, but only Case I is shown mathematically. The other
three, which are listed, gave similar results.

Case I. The slider can rotate only about the y-axis, with the counter surface translating
along the X direction.
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For this, /, /Q , /$ "0, and equation (3) becomes
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Substituting /, /Q , /$ "0 and t, tQ , t$ "0, into equations (6) and (7), equating, and letting
h
y
P0 (to eliminate the third dimension) yields
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Equations (8) and (9) are identical to equations (4) and (5) in reference [14].
Case II. The slider of Case I reoriented 903 so that it rotates about the x-axis with the

counter surface still moving along the X direction.
Case III. The slider rotates only about the x-axis with the surface moving along the
> direction.

Case I<. Same as Case III, with the slider reoriented 903 so that it can rotate only about
the y-axis.

3. NON-DIMENSIONALIZATION OF EQUATIONS

To facilitate solution of the system of di!erential equations implied by equations (6) and
(7), we de"ne the following dimensionless variables:
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With these de"nitions, we can write equations (6) as
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The total external moments in equation (7) can be expressed in the non-dimensional
forms
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and the normal force as
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Equating equation (10) with equation (11) and substituting F1
n

from Equation (12) into
Equation (11) yields a set of very long and complicated non-linear ordinary di!erential
equations. To simplify, we introduce new variables and rearrange the equations.

We de"ne c
x
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y
, c

z
, d

x
, d

y
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z
such that equations (11) assumes the form

MM
x
"c

x
FM
n
#d

x
, MM

y
"c

y
FM
n
#d

y
, MM

z
"c

z
FM
n
#d

z
, (13a}c)

where c
x
, c

y
, and c

z
are functions of (/, h, t), and that d

x
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y
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z
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(
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n
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where a
(

and ah are functions of (/, h).
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Now equating equation (10) with equation (13), substituting FM
n
from equation (14), and

rearranging terms, we obtain
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With appropriate initial conditions, equations (15) de"ne the initial-value problem.
Note that we established the equations of motion only for /, h'0, when the contact

point is at the co!ordinate (!h
x
, h

y
, h

z
). For other cases, the equations are valid if the

signs of length ratios a and b change as follows: when /(0: b"!h
y
/h

z
; when h(0:

a"!h
x
/h

z
.

4. STABILITY ANALYSIS

To ascertain the stability of the system (15) for possible design of vibrating sliders, we will
determine all equilibrium points of these equations, along with their relative stability. Our
procedure will follow Swayze and Akay [14]. The equilibrium points /

e
, h

e
, and t

e
can be

determined by setting all derivative terms in equation (15) to zero, and then solving the set
of resulting transcendental equations. With derivative terms zero, equations (15) become
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Equations (16) comprise three equations in three unknowns /
e
, h

e
, and t

e
which can be

solved numerically. Due to the non-linear functions, there may exist multiple equilibrium
points or none at all, depending on the values of the parameters. Equation (16) is only valid
for /, h'0; candidate solutions /

e
or h

e
cannot violate this condition. For the other cases,

sign changes of a and b must be consistent with the criteria given above.
Because of the piecewise nature of the equations of motion, the preceding analysis will fail

when / or h"0. These points are physically important since most bodies begin with zero
displacement. We apply a potential energy analysis instead.

Neglecting gravity, the potential energy < of the system is
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where Z)0 is the vertical displacement due to small angular rotations given in
equation (1). Since F
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*0, potential energy <*0, so
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By dividing both sides by mh2
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z
, equation (17) can be written in the non-dimensional form
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where
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Z

h
z

"![a sin h#b sin/ cos h!(1!cos/ cos h)].

The relative minima, relative maxima, and points of re#ection of < represent equilibrium
points. Relative minima correspond to centers that are stable; relative maxima correspond
to saddle points that are not. The potential energy < depends on /, h, and t. The piecewise
nature of the equations of motion, however, pertains to / and h, but not t. Hence, we hold
t constant and plot < versus / and h. Figure 2 shows an example when /, h'0. The
surface for < in the other three quadrants could be constructed by symmetries about the
/"0 plane, the h"0 plane, and the origin. From this analysis, the potential energy
has a local minimum at /, h"0 and the system is stable about this point. Numerical
Figure 2. Potential energy of the system versus / and h; FM
st
"0)9, a"b"0)6, X

(
"Xh"Xt"1)0,

f
z
"f

(
"fh"ft"0, k"0)0: (a) t"0)0 rad; (b) t"1)0 rad.
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simulations support this argument. Another interesting point observed during simulations
is that di!erent values of t shift the potential energy surface up or down, and seem not to
a!ect the shape of the surface.

This model is based on the assumption that all rotations /, h, and t are small and can be
considered commutative. The system has been shown stable about /, h"0. An important
question is &&For how large a region about /, h"0 is the system still stable?'' and &&How do
system parameters a!ect stability?''

System parameters in#uencing stability include k, a, b, X/, Xh, Xt, fz, f(, fh, ft , and FM
st
. As

veri"ed earlier, when b"0, the model is identical to Swayze and Akay's whose stability
&&analysis was covered in reference [14]. Our discussions will focus on stability when bO0,
using Swayze and Akay's approach as a guide.

An important parameter is the coe$cient of friction. Larger values shrink the domain of
attraction of the stable point at the origin which remains a stable equilibrium point as long
as the coe$cient of friction does not exceed a critical value k

cr
. For k'k

cr
, stability

depends on other parameters such as sti!nesses and static force F1
st
. We used Swayze and

Akay's approach to determine k
cr

and found that k
cr
"a. Figure 3 illustrates how the

coe$cient of friction in#uences the system response. In Figures 3(a)}3(c), where k(k
cr
, the

system has an equilibrium point at h"0. In Figure 3(d), where k'k
cr
, instead of the origin,

the system has an equilibrium point about h"1)0. Excessive friction tends to tilt the slider.
Increases in the static normal force F1

st
seem to decrease the domain of attraction of the

stable point at the origin. Figure 4 contains simulations of rotations (/, h, t) versus
non-dimensional time q, with parameters F1

st
, X

(
, Xh, and Xt varied. By comparing the

sub-"gures of Figure 4, it is seen that excessive F1
st

could cause instability when k5k
cr
. In

Figure 4(b), the maximum magnitudes of / and t are approximately 7 and 14 rad,
respectively. Therefore, it is desirable to keep F1

st
as low as possible. Large values of the

natural frequency ratios, X
(
, Xh, and Xt, associated with torsional sti!nesses, improve

stability, or provide stability for a system otherwise unstable, as illustrated in Figure 4. The
Figure 5 plots are similar to those in Figure 4, except that damping is increased and friction
coe$cient k is varied. Damping does not change the position of the equilibrium point but
causes the response to eventually decay to the equilibrium point, which usually improves
stability.

Similar observations of the e!ects of these system parameters were also noticed by
Swayze and Akay in their two-dimensional model [14].

In York's experiments [12], the slider was held within a holder, limiting its rotations to
a maximum of approximately $10~2 rad. As stated earlier, the slider has a stable
equilibrium point at /, h"0. However, there might be other stable equilibrium points
within the range of $10~2 rad. To determine equilibrium points, we solve equation (16)
numerically with the following parameter values: a"b"0)2, k"0)25, FM

st
"2)0,

X
(
"Xh"Xt"40. All candidate solutions found violated the condition /

e
, h

e
'0.

However, simulations suggested a stable equilibrium point at hO0, /"0 (see Figure 6)
although the equilibrium point could not be found by solving equation (16), invalid when
/"0. Even though the potential energy surfaces in Figure 2 are for another set of
parameters, they suggest that, along plane /"0, there are possible points where L</Lh"0
and thus minima.

5. SIMULATION RESULTS

Equations (15) were solved by a numerical solver [16, 17] that employs a modi"ed
divided di!erence form of the Adams}Bashforth}Moulton family of orders 1}12. For most



Figure 3. System responses for di!erent coe$cients of friction; F1
st
"0)9, a" b"0)6, X

(
"Xh"Xt"1)0, and

f
;
" f

(
" fh" ft"0: (a) k"0)0; (b) k"0)2; (c) k"0)4; (d) k"0)7.
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calculations, 10~6 and 10~8 were used for the relative error tolerance and absolute error
tolerance respectively.

5.1. NUMERICAL VERIFICATION

To simulate Swayze and Akay's [14] results numerically (to increase con"dence in the
numerical method), we must restrict rotations to one d.o.f (h angle), and enforce a
two-dimensional model with an in"nitesimally thin thickness. With bP0, our model
approaches Swayze and Akay's, and regardless of the values of X

(
and Xt, the simulations



Figure 4. Increase in F1
st

might cause instability and increase in X
(
, Xh , and Xt improves stability; k"0)6,

a"b"0)6, and f
z
"f

(
" fh"ft"0: (a) FM

st
"0)9 and X

(
"Xh"Xt"1)0; (b) FM

st
"2)0 and

X
(
"Xh"Xt"1)0; (c) FM

st
"2)0 and X

(
"Xh"Xt"10)0.
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perfectly match Swayze and Akay's Figures 4(a) and 4(c) in reference [14]. The motions in
the other two d.o.f, i.e. /, /Q , t and tQ , remain identically zero, because when b"0, the
di!erential equations are decoupled.

When bO0, results deviate monotonically from Swayze and Akay's. Phase plane plots of
Figure 7 show the simulations of two randomly chosen cases for b" 0)01, 0)1, 1, and 10
times a (b"0 is also included for comparison) with X

(
, Xt"1 for every b. As can be seen

for Figure 7, for larger b the size of the closed trajectory in the phase plane grows.

5.2. SURFACE WAVINESS STUDY

5.2.1. Introduction

Past studies of slider rigid-body motions usually assume a smooth counter surface with
one contact point between slider and counter surface. Real surfaces exhibit undulations
extending in two directions with multiple contact points. We will replace the multiple
contact points with an &&equivalent'' contact point applied by an equivalent force system



Figure 5. System responses decay to the equilibrium point with damping present; FM
st
"0)9, a"b"0)6,

X
(
"Xh"Xt"1)0, and f

z
"f

(
"fh"ft"0)2: (a) k"0)2; (b) k"0)6.

Figure 6. Equilibrium point is at /"0 but hO0; a"b"0)2, k"0)25, FM
st
"2)0, X

(
"Xh"Xt"40, and

f
z
"f

(
"fh"ft"0)5: (a) system responses; (b) magni"ed views of / and h responses at the end of the simulation.
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with contact tractions (having forces and moments) equivalent to those generated by the
multiple contact points.

Consider possible paths P(t) depicted in Figure 8 of the equivalent contact point moving
across the slider's face. The path P (t) in#uences rigid-body motions of the slider via the
forces and moments that the contact tractions at these various locations generate. As the
counter surface moves beneath the slider, waviness of the counter surface causes
the equivalent point to move about the slider's bottom surface. Let (x (t), y (t)) be a point in
the path P (t)"M(x(t), y(t)) : y"g (x) and t3(t

0
, t

0
#¹)N, where t

0
is some initial time and



Figure 7. Phase plane plots when b varies; a"1/1)8, FM
st
"1)5/a, Xh"X

(
"Xt"1)0. fh"f

(
"ft"f

z
"0)0.

**, b"0; } } }, b"0)01a; } )} ) }, b"0)1a; ))))), b"a; ===, b"10a; parameters are in accordance with
reference [14]. (a) k"0)0; (b) k"0)4.

Figure 8. Four path types considered in the study. } } }, ¹ype I; **, ¹ype II; } ) }, ¹ype III; ))))), ¹ype I<.
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¹ is the time the contact point traverses path P(t). To apply these concepts, the equivalent
contact point must now be at (x(t), y (t), h

z
), instead of (!h

x
, h

y
, h

z
), in the xyz system. Thus,

the equations of motion can be obtained by replacing !h
x

and h
y

with x (t) and y (t)
respectively, in all the equations of motion in section 2.1.

Possible path functions considered included (see Figure 8)

f ¹ype I: straight line back with constant, y"A;
f ¹ype II: straight line angled with linear, y"Ax;
f ¹ype III: sinusoidal, y"A sin (ux);
f ¹ype I<: half-ellipse, y"AJb2!x2. The path would become a half-circle when A"1.

In practice, surface waviness on the counter surface generates the path of the equivalent
contact point. On rotors, waviness pro"les are periodic, with a period ¹ equal to the time of
one full rotation. To incorporate this, our equivalent contact point will repetitively sweep
out paths P (t) over the slider face: Dx D)h

x
and Dy D)h

y
will be periodic functions of time

with period ¹. In non-dimensional form, we de"ne x6 "x/h
z

and y6 "y/h
z
, so Dx6 D)a and

Dy6 D)b.
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5.2.2. Results and discussions

Typical responses (/, h, t) versus time q, and spectral densities of these waveforms
obtained via Fourier transformations, for path motions along the four path types I}I< are
shown in Figures 9}13. Here, x6 (q)"a cos(2nq/¹M ), where q"tu

z
is a dimensionless time

de"ned in section 4, ¹M "¹u
z

is the dimensionless period of x6 , and f and fu
z

are the
non-dimensional and dimensional frequencies. Parameters in the simulations were
a"b"0)6, k"0)2, FM

st
"5)0, X

(
"Xh"Xt"100, and f

z
"f

(
"fh"ft"0)0. The

period ¹M was varied, although for the typical data shown in Figures 9}13, ¹M "0)1. Results
and details of other cases simulated can be found in reference [18].
Figure 9. Responses in time and frequency domains for ¹ype I: y6 "0)5b with ¹M "0)1: (a) rotation about x-axis;
(b) rotation about y-axis; (c) rotation about z-axis.



Figure 10. Responses in time and frequency domains for ¹ype II: y6 "0)5x6 with ¹M "0)1: (a) rotation about
x-axis; (b) rotation about y-axis; (c) rotation about z-axis.
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Figure 9 show typical responses for ¹ype I paths with y6 "0)5b. The h trace contains the
fundamental component at frequency f"10, inverse to the period ¹M "0)1, and a second
component near frequency f"14, likely a natural frequency. Due to the closeness of the two
components, a &&beat'' appears in the h trace. The traces and spectra for / and t were
similar: both lacked the fundamental component, instead containing a component at twice
the applied frequency, and their largest component was at the aforementioned natural
frequency. At ¹M "0)01, the responses were greatly enhanced, suggesting another natural
frequency. ¹ype I paths with y6 "0 (where the equivalent contact point swept back and
forth along the x-axis) gave /"t"0. This was expected, since the path along the x-axis



Figure 11. Responses in time and frequency domains for ¹ype II: y6 "0)25x6 with ¹M "0)1. (a) rotation about
x-axis; (b) rotation about y-axis; (c) rotation about z-axis.
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generated no moment to excite these degrees of freedom. Finally, for paths y6 "0 with
periods ¹M "0)01, the component at f"14 dominated the spectrum and the beat
disappeared.

Responses for ¹ype II paths with y6 "0)5x6 and y6 "0)25x6 are shown in Figures 10 and 11.
Here the / and t frequency spectra resemble the h frequency spectrum. A component
corresponding to the applied frequency now appears in / and t. With y6 "0)25x6 , waveforms
have similar shapes but reduced peak to peak values. At ¹M "0)01, components of
frequencies ranging from 12 to 16 were prevalent, which encouraged beats.



Figure 12. Responses in time and frequency domains for ¹ype III: y6 "0)5bsin(nx6 /a) with ¹M "0)1. (a) rotation
about x-axis; (b) rotation about y-axis; (c) rotation about z-axis.
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Figures 12 demonstrate responses for ¹ype III paths with y6 "0)5b sin(nx6 /a). The
responses were similar to ¹ype II, except for a frequency component at 30 in the / and
t responses, three times higher than the applied frequency. At ¹M "0)2 or fM

x
"5, the natural

frequency component at 14 was increased, especially for / and t.

As seen in Figures 13, for ¹ype I< paths with y6 "0)5bJ(a2!x6 2), the overall responses
are very similar to those of ¹ype I, including the presence of the component at twice the
applied frequency. At ¹M "0)01, however, the responses were not as enhanced.



Figure 13. Responses in time and frequency domains for ¹ype I<: y6 "0)5bJ(a2!x6 2) with ¹M "0)1. (a) rotation
about x-axis; (b) rotation about y-axis; (c) rotation about z-axis.
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The following conclusions can be drawn from Figures 9}13.

1. For a given period ¹, both magnitudes and frequency components of h responses are
similar for all the path types studied (cf. Figures 9}13). We conclude that h responses
depend strongly on x(t), and weakly on the path function y"g (x). For waviness
wavelengths s'2h

x
, rotations h (about the y-axis) are associated with tilting of

the slider as it climbs and descends waviness hills in its path, which is directed along X.
2. / and t responses depend on the path function y"g(x), with magnitudes

proportional to the magnitude of the path function at a given period. Waviness ridges



SLIDING AGAINST WAVY SURFACE 781
extending non-perpendicular to X would generate y"g(x), and induce tilting / of the
body about the X axis. Rotations t are induced by the equivalent contact point acting
at a distance from the z axis (see Figure 1). Compare Figures 10 and 11, where
y(x)"0)5x and 0)25x respectively.

3. The overall responses for ¹ype I and ¹ype I< are similar, cf. Figures 9 and 13. The
overall responses for ¹ype II and ¹ype III are also similar, cf. Figures 10 and 12.

4. System responses usually have a larger component at the natural frequency than the
applied frequency.

5.2.3. Comparisons with experimental results

In the apparatus of reference [13], a 2)46 cm]2)32 cm]10 cm carbon graphite block of
0.09 kg, spring loaded in a holder, slid against a rotor. Surface waviness passed beneath the
slider (along X) with speed;, and forced the slider to translate normal to the sliding surface,
and rock with rotation vectors parallel and perpendicular to the sliding direction.
A capacitance gauge measured translations (X, >, Z) shown in Figure 1; displacements
X and > were converted into rotations h and /, with rotation vectors parallel and
perpendicular to the sliding direction X. Clearances between the slider and the holder
limited motions of the sliders. A &&snug "t'' clearance restricted rigid-body translations
(X, >) of the slider to 50 km or less, and consequently, rocking rotations h and /.

Figures 14(a) and 15(a), taken from reference [13], were measured during sliding on the
same wavy surface. Figure 14(a) pertains to displacements Z normal to the counter surface,
Figure 14. Similar responses in time and frequency domains from Bryant and York's experiments and the
simulations using the proposed model: (a) Bryant and York's experimental conditions: Z vibrations, snug "t at
500 rpm (Figure 4(b) in reference [13]); (b) simulation parameters: Z vibrations, ¹"0)12, ¹ype II path with
y6 "0)8x6 , k"0)2, FM

st
"2)0, X

(
"Xh"40, Xt"100, f

z
"f

(
"fh"ft"0)3



Figure 15. Similar responses in time and frequency domains from Bryant and York's experiments and the
simulations using the proposed model. (a) Bryant and York's experimental conditions: > vibrations, snug "t at
1000 rpm (Figure 4(b) in reference [13]); (b) simulation parameters: > vibrations, ¹"0)06, ¹ype II path with
y6 "0)8x6 , k"0)2, FM

st
"2)0, X

(
"Xh"40, Xt"100, f

z
"f

(
"fh"ft"0)0.

782 C. PHOLSIRI AND M. D. BRYANT
at a rotational speed of 500 rpm, which corresponds to sliding at 7)3 m.s~1. Figure 15(a)
pertains to translational displacements> at 1000 rpm (sliding at 14.6 m.s~1), which results
in rocking rotations / with rotation vector parallel to the sliding direction. Figures 14(b)
and 15(b) were simulated with our four-d.o.f. model. With proper choice of model
parameters, particularly y6 , k, and ¹, agreement between experiment and simulation is good.
The values of parameters used in Figures 14 and 15 &&tuned'' the model to the apparatus of
reference [13]. Note that in going from Figures 14 to Figures 15, the rotational speed, and
hence the sliding speed doubles. For the simulations to agree, the period ¹ of the
simulation's oscillations must be halved, as Figures 14(b) and 15(b) show.

This model can be used as a tool to design and understand how the slider interacts with
the surface waviness to produce vibrations of a certain type. Characterization of surface
topography, including surface waviness, generally requires many parameters. Thus surface
waviness induced vibrations would also appear to require many parameters. The results of
our study suggest that the equivalent contact point, with an appropriately chosen path type,
can simplify these analyses. For the surface waviness present on the counter surface of
reference [13], Figures 14 and 15 suggest that a ¹ype II (straight line angled) path with
parameter y6 "0)8x6 is an acceptable model.

6. SUMMARY AND CONCLUSIONS

We simulated vibrations of a four-d.o.f. rigid-body sliding against smooth and wavy
surfaces, and under special conditions analytically and numerically veri"ed results of
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Swayze and Akay [14]. Equations were highly non-linear. Stability analyses show that
higher values of the torsional sti!nesses (X/ , Xh , and Xt) improve stability, while higher
values of the static force FM

st
reduce stability by shrinking the domain of attraction around

the origin. Excessive F1
st

could drive the system unstable. The system appears to be stable if
the coe$cient of friction k is less than a critical value k

cr
"a"h

x
/h

z
, related to a ratio of

slider dimensions.
Simulations for rigid bodies sliding against wavy countersurfaces employed an equivalent

contact point that swept over selected paths on the slider's contact face. Four path types
considered*¹ype I straight line back, ¹ype II straight line angled, ¹ype III sinusoid, and
¹ype I< half-ellipse*displayed motions dependent on the path type. Traces generated by
¹ype I and ¹ype I< were similar, as were ¹ype II and ¹ype III. Natural frequencies
signi"cantly in#uenced responses.

Finally, the model was used to simulate experimental results [13] wherein the vibratory
motions of a slider were constrained to four d.o.f. The simulation and experimental results
were very similar, given appropriate choice of parameters in the model. The model could
then be used as a mathematical tool to design proper patterns of surface waviness to
generate bene"cial vibrations that can control wear.
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APPENDIX A: EULER'S ANGLES

The transformation matrices can be obtained by observing Figure 16 along with the
de"nitions of t, h, and /. The following equations describe the transformations.

G
x@

y@

z@ H"
cost sint 0

!sint cost 0

0 0 1 G
X

>

Z H , (A1)

G
xA

yA

zA H"
cos h 0 !sin h

0 1 0

sin h 0 cos h G
x@

y@

z@ H , (A2)

G
x

y

z H"
1 0 0

0 cos/ sin/

1 !sin/ cos/ G
xA

yA

zA H . (A3)
Figure 16. The Euler's angles.
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Rewriting the above equations in shorter form, we obtain

Mv@N"[¹t]M<N, Mv@@N"[¹h]Mv@N, MvN"[¹
(
]Mv@@N

or

MvN"[¹
(
][¹h][¹t]M<N"[¹]M<N ,

where M<N is an arbitrary vector v in the "xed X>Z axes and MvN represents the same vector
in the rotating xyz co-ordinate system. The transformation matrix can be obtained by
performing the matrix multiplications in the preceding equation.

G
x

y

z H"
cos t cos h sint cos h !sin h

(!sint cos/ (cost cos/#

#cost sin h sin/) #sint sin h sin/) cos h sin /

(sint sin/ (!cost sin /#

#cost sin h cos/) sint sin h cos/) cos h cos /

G
X

>

Z H , (A4)

Because of the orthogonality of the transformation matrix, inverse transformations may
be obtained by simply transposing [¹].

M<N"[¹]TMvN . (A5)

Note that this transformation matrix assumes a sequence of rotations: t, h, and then /. If
the sequence di!ers from this, it would result in a di!erent transformation matrix. However,
the assumption that angular displacements are small makes the order in the sequence
insigni"cant.

APPENDIX B: NOMENCLATURE

b
z
, b
(
, bh , bt damping coe$cients about axes

h
x
, h

y
, h

z
dimensions of rigid body

I
xx

, I
yy

, I
zz

rotational inertias of rigid body about x
F
n

normal force
Fk friction force
F
st

static load on slider
F
wav

normal force due to surface waviness
k
z
, k
(
, kh , kt sti!nesses about axes

m mass of rigid sliding body
t time
< potential energy
; sliding speed, see Figure 1
(X,>, Z), (x, y, z) inertial and attached co-ordinates, see Figure 1
/, h, t Euler angles for rotations about (x, y, z)
k friction coe$cient
k
cr

critical friction coe$cient for stability
u@

x
, u@

y
, u@

z
rotational speeds about (x, y, z)

u
z
, u

(
, uh , ut natural frequencies, section 3

Non-dimensional variables (section 3)

FM
n
, FM

st
, FM

wav
non-dimensional forces

x6 , y6 non-dimensional path co-ordinates
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c
x
, c

y
, c

z
, d

x
, d

y
, d

z
non-dimensional groups, see equations (13)

a
(
, ah , FK n non-dimensional groups, see equations (13)

a, b length ratios, section 3
c, j, g inertia ratios
q dimensionless time
X
(
, Xh , Xt frequency ratios

f
z
, f
(
, fh , ft damping ratios

Notations and subscripts

( )@ ,d/dq
( ) )5 ,d/dt
FM non-dimensional variable F, section 3
e equilibrium points
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